Vidyavardhini's College of Engineering and Technology

Program: Mechanical Engineering

Curriculum Scheme: CBCS (REV-2019 C Scheme)

Examination: SE Semester- III

Course Code: MEC302 Course Name: Strength of Materials Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks. (2 Marks each)
1	A . 1 110
1.	A steel rod 10mm in diameter and 1m long is heated from 20 to 100 °C, E = 200
	GPa and coefficient of thermal expansion is 12 x10-6 per degree Celsius, thermal
	stress developed is –
	Assume complete expansion is prevented.
Option A:	192 MPa(tensile)
Option B:	212 MPa(tensile)
Option C:	192MPa(compressive)
Option D:	212 MPa(compressive)
2.	Which of the following statement is incorrect?
Option A:	Stress is directly proportional to strain within elastic limit
Option B:	Stress is force per unit area
Option C:	Hook's law holds good up to yield point
Option D:	The ratio of linear stress to linear strain is called Young's modulus.
3.	Strain in a direction right angle to the direction of applied force is known as-
Option A:	Lateral strain
Option B:	Volumetric Strain
Option C:	Complementary shear strain
Option D:	None of the above
4.	In a cantilever of length l carrying a load whose intensity varies uniformly from zero at the free end to w per unit run at the fixed end, The maximum bending
	moment is -
Option A:	wl/3
Option B:	$wl^2/3$
Option C:	$wl^2/6$
Option D:	$wl^2/24$
5.	In a simply supported beam with uniformly distributed load, the shearing force varies following a –
Option A:	Linear law
Option B:	Parabolic law
Option C:	Cubic law
Option D:	None of the above

(At a maint of controllarium
6. Option A:	At a point of contraflexure- Bending moment is maximum
Option B:	Bending moment is zero
Option C:	Shear force is Zero
Option D:	None of the above
Option D.	None of the above
7.	To determine longitudinal stress, efficiency of is to be considered
Option A:	Construction joint
Option B:	Transverse joint
Option C:	Longitudinal Joint
Option D:	Rivet joint
_	
8.	stress does not exceed the permissible tensile stress for the shell
	material.
Option A:	Axial
Option B:	Longitudinal
Option C:	Ноор
Option D:	Lateral
9.	When a thin cylindrical shell is subjected to internal pressure, which of the
O 1: A	following stresses are not induced in shell-
Option A:	Circumferential stress
Option B:	Longitudinal stress
Option C:	Shear stress Parting Stress
Option D:	Bending Stress
10.	A cylindrical vessel for air compressor is to be made of 15 mm thick plate having
10.	permissible tensile stress is 120 N/mm ² . If the efficiencies of the longitudinal and
	circumferential joints are 70% and 30% respectively, determine –
	Maximum permissible diameter of the shell for an internal pressure of 2 MN/m ²
Option A:	1.26 m
Option B:	1.08 m
Option C:	1.8 m
Option D:	3.6 m
11.	A sylindrical vessel for air compressor is to be made of 15 mm thick plate having
11.	A cylindrical vessel for air compressor is to be made of 15 mm thick plate having
	permissible tensile stress is 120 N/mm ² . If the efficiencies of the longitudinal and
	circumferential joints are 70% and 30% respectively, determine-
	Permissible intensity of pressure when a shell diameter is 1.5 m.
Option A:	1.26 MN/m ²
Option B:	1.44 MN/m ²
Option C:	1.08 MN/m ² 1.8 MN/m ²
Option D:	1.0 IVIIN/III
12.	Section modulus for a circular section of 40 mm diameter
Option A:	314.16 mm ³
Option B:	12566.37 mm ³
Option C:	6283.19 mm ³
Option D:	125663.7 mm ³
pron D.	
L	I

13. The strength of the beam is mainly depending on- Option A: Bending moment Option B: C.G. of the section Option C: Section modulus Option D: Its weight 14. A rectangular beam 120 mm wide and 300 mm deep is simply supported over a span of 4 m. what u.d.l. the beam may carry if the bending stress is not to exceed 120 MPa. Option A: 108 N/m Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option D: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP G = 27 GPa
Option B: C.G. of the section Option C: Section modulus Option D: Its weight 14. A rectangular beam 120 mm wide and 300 mm deep is simply supported over a span of 4 m. what u.d.l. the beam may carry if the bending stress is not to exceed 120 MPa. Option A: 108 N/m Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
Option C: Section modulus Option D: Its weight 14. A rectangular beam 120 mm wide and 300 mm deep is simply supported over a span of 4 m. what u.d.l. the beam may carry if the bending stress is not to exceed 120 MPa. Option A: 108 N/m Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
Option D: Its weight 14. A rectangular beam 120 mm wide and 300 mm deep is simply supported over a span of 4 m. what u.d.l. the beam may carry if the bending stress is not to exceed 120 MPa. Option A: 108 N/m Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
14. A rectangular beam 120 mm wide and 300 mm deep is simply supported over a span of 4 m. what u.d.l. the beam may carry if the bending stress is not to exceed 120 MPa. Option A: 108 N/m Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m Option D: 5.4 kN-m What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
span of 4 m. what u.d.l. the beam may carry if the bending stress is not to exceed 120 MPa. Option A: 108 N/m Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
span of 4 m. what u.d.l. the beam may carry if the bending stress is not to exceed 120 MPa. Option A: 108 N/m Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
120 MPa.
Option A: 108 N/m Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
Option B: 108 kN/m Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
Option C: 108 N/mm Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
Option D: 108 kN/mm 15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
15. A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
exceeding an allowable shearing stress of 75 MPa, is - Option A: 21.6 kN-m Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
Option B: 10.8 kN-m Option C: 16.3 kN-m Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
Option C: 16.3 kN-m Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
Option D: 5.4 kN-m 16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
16. What must be the length of a 8 mm diameter aluminum wire so that it can be twist through one complete revolution without exceeding a shearing stress of 45 MP
through one complete revolution without exceeding a shearing stress of 45 MP
through one complete revolution without exceeding a shearing stress of 45 MP
Option A: 15.08 m
Option B: 10.08 m
Option C: 16.08 m
Option D: 20.08 m
17. The plane on which only direct stress is acting is called-
Option A: Principal Plane
Option B: Complementary plane
Option C: Shear plane
Option D: Mohr's plane
18. On the principal plane, shear stress is
Option A: Zero
Option B: Maximum
Option C: Minimum
Option D: infinity
19. When a body is subjected to two tensile stresses of equal magnitude on two
mutually perpendicular planes, the radius of mohr circle will be
Option A: Zero
Option B: Maximum
Option C: Minimum
Option D: infinity

20.	When a body is subjected to direct stresses in two mutually perpendicular
	directions, tangential stress across inclined plane will be maximum when-
Option A:	$\Theta = 0^{\circ}$
Option B:	$\Theta = 45^{\circ}$
Option C:	$\Theta = 90^{\circ}$
Option D:	$\Theta = 180^{\circ}$

Section 2-

Q2.	Solve any FOUR Questions. 5 marks each
A	A material has Young's modulus of elasticity 2 x 10 ⁵ N/mm ² and Poisson's ratio of
	0.32. Calculate the modulus of rigidity and bulk modulus of the material.
В	A steel rod 3 m long and 50 mm diameter is used as a column with both ends are
	hinged. Find crippling load by Euler's formula Take $E = 2 \times 10^5 \text{ N/mm}^2$
С	Derive an expression for circumferential and longitudinal stress for this cylindrical
	shell.
D	A steel bar of 50 mm x 50 mm in section and 3 m long is subjected to an axial pull of
	140 kN. Calculate the strain energy stored in the bar. Also find the extension of the bar.
	Take $E = 200 \text{ GPa}$
Е	What must be the length of a 5 mm diameter aluminium wire so that it can be twisted
	through one complete revolution without exceeding a shearing stress of 42 MN/m ² .
	Modulus of rigidity = 27 GN/m^2

