Vidyavardhini's College of Engineering and Technology Program: Mechanical Engineering Curriculum Scheme: CBCS (REV-2019 C Scheme)

Examination: SE
Course Code: MEC302
Time: 2 hour

Semester- III
Course Name: Strength of Materials
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks. (2 Marks each)
1.	A steel rod 10 mm in diameter and 1 m long is heated from 20 to $100^{\circ} \mathrm{C}, \mathrm{E}=200$ GPa and coefficient of thermal expansion is $12 \times 10-6$ per degree Celsius, thermal stress developed is Assume complete expansion is prevented.
Option A:	192 MPa (tensile)
Option B:	212 MPa (tensile)
Option C:	192MPa(compressive)
Option D:	212 MPa (compressive)
2.	Which of the following statement is incorrect?
Option A:	Stress is directly proportional to strain within elastic limit
Option B:	Stress is force per unit area
Option C:	Hook's law holds good up to yield point
Option D:	The ratio of linear stress to linear strain is called Young's modulus.
3.	Strain in a direction right angle to the direction of applied force is known as-
Option A:	Lateral strain
Option B:	Volumetric Strain
Option C:	Complementary shear strain
Option D:	None of the above
4.	In a cantilever of length l carrying a load whose intensity varies uniformly from zero at the free end to w per unit run at the fixed end, The maximum bending moment is -
Option A:	wl/3
Option B:	$w l^{2} / 3$
Option C:	$w l^{2} / 6$
Option D:	$w l^{2} / 24$
5.	In a simply supported beam with uniformly distributed load, the shearing force varies following a-
Option A:	Linear law
Option B:	Parabolic law
Option C:	Cubic law
Option D:	None of the above

6.	At a point of contraflexure-
Option A:	Bending moment is maximum
Option B:	Bending moment is zero
Option C:	Shear force is Zero
Option D:	None of the above
7.	To determine longitudinal stress, efficiency of ___ is to be considered
Option A:	Construction joint
Option B:	Transverse joint
Option C:	Longitudinal Joint
Option D:	Rivet joint
8.	\qquad stress does not exceed the permissible tensile stress for the shell material.
Option A:	Axial
Option B:	Longitudinal
Option C:	Hoop
Option D:	Lateral
9.	When a thin cylindrical shell is subjected to internal pressure, which of the following stresses are not induced in shell-
Option A:	Circumferential stress
Option B:	Longitudinal stress
Option C:	Shear stress
Option D:	Bending Stress
10.	A cylindrical vessel for air compressor is to be made of 15 mm thick plate having permissible tensile stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$. If the efficiencies of the longitudinal and circumferential joints are 70% and 30% respectively, determine Maximum permissible diameter of the shell for an internal pressure of $2 \mathrm{MN} / \mathrm{m}^{2}$
Option A:	1.26 m
Option B:	1.08 m
Option C:	1.8 m
Option D:	3.6 m
11.	A cylindrical vessel for air compressor is to be made of 15 mm thick plate having permissible tensile stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$. If the efficiencies of the longitudinal and circumferential joints are 70% and 30% respectively, determinePermissible intensity of pressure when a shell diameter is 1.5 m .
Option A:	$1.26 \mathrm{MN} / \mathrm{m}^{2}$
Option B:	$1.44 \mathrm{MN} / \mathrm{m}^{2}$
Option C:	$1.08 \mathrm{MN} / \mathrm{m}^{2}$
Option D:	$1.8 \mathrm{MN} / \mathrm{m}^{2}$
12.	Section modulus for a circular section of 40 mm diameter
Option A:	$314.16 \mathrm{~mm}^{3}$
Option B:	$12566.37 \mathrm{~mm}^{3}$
Option C:	$6283.19 \mathrm{~mm}^{3}$
Option D:	$125663.7 \mathrm{~mm}^{3}$

13.	The strength of the beam is mainly depending on-
Option A:	Bending moment
Option B:	C.G. of the section
Option C:	Section modulus
Option D:	Its weight
14.	A rectangular beam 120 mm wide and 300 mm deep is simply supported over a span of 4 m . what u.d.l. the beam may carry if the bending stress is not to exceed 120 MPa .
Option A:	$108 \mathrm{~N} / \mathrm{m}$
Option B:	$108 \mathrm{kN} / \mathrm{m}$
Option C:	$108 \mathrm{~N} / \mathrm{mm}$
Option D:	$108 \mathrm{kN} / \mathrm{mm}$
15.	A torque which may be applied to a solid shaft of 90 mm outer diameter without exceeding an allowable shearing stress of 75 MPa , is -
Option A:	21.6 kN-m
Option B:	$10.8 \mathrm{kN}-\mathrm{m}$
Option C:	$16.3 \mathrm{kN}-\mathrm{m}$
Option D:	5.4 kN -m
16.	What must be the length of a 8 mm diameter aluminum wire so that it can be twisted through one complete revolution without exceeding a shearing stress of 45 MPa ? $\mathrm{G}=27 \mathrm{GPa}$
Option A:	15.08 m
Option B:	10.08 m
Option C:	16.08 m
Option D:	20.08 m
17.	The plane on which only direct stress is acting is called-
Option A:	Principal Plane
Option B:	Complementary plane
Option C:	Shear plane
Option D:	Mohr's plane
18.	On the principal plane, shear stress is ------
Option A:	Zero
Option B:	Maximum
Option C:	Minimum
Option D:	infinity
19.	When a body is subjected to two tensile stresses of equal magnitude on two mutually perpendicular planes, the radius of mohr circle will be
Option A:	Zero
Option B:	Maximum
Option C:	Minimum
Option D:	infinity

20.	When a body is subjected to direct stresses in two mutually perpendicular directions, tangential stress across inclined plane will be maximum when-
Option A:	$\Theta=0^{\circ}$
Option B:	$\Theta=45^{\circ}$
Option C:	$\Theta=90^{\circ}$
Option D:	$\Theta=180^{\circ}$

Section 2-

Q2.	Solve any FOUR Questions.
A	A material has Young's modulus of elasticity $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio of 0.32. Calculate the modulus of rigidity and bulk modulus of the material.
B	A steel rod 3 m long and 50 mm diameter is used as a column with both ends are hinged. Find crippling load by Euler's formula Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
C	Derive an expression for circumferential and longitudinal stress for this cylindrical shell.
D	A steel bar of $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ in section and 3 m long is subjected to an axial pull of $140 \mathrm{kN} . ~ C a l c u l a t e ~ t h e ~ s t r a i n ~ e n e r g y ~ s t o r e d ~ i n ~ t h e ~ b a r . ~ A l s o ~ f i n d ~ t h e ~ e x t e n s i o n ~ o f ~ t h e ~ b a r . ~$ Take $\mathrm{E}=200 \mathrm{GPa}$
E	What must be the length of a 5 mm diameter aluminium wire so that it can be twisted through one complete revolution without exceeding a shearing stress of $42 \mathrm{MN} / \mathrm{m}^{2}$. Modulus of rigidity $=27 \mathrm{GN} / \mathrm{m}^{2}$

Q3.	Solve any TWO Questions. 10 marks each
A	For the beam shown in figure draw SFD, BMD and AFD
B	A beam ABCD of 7 m span is supported at A and D and loaded as hown in figure. Find (i) Deflection at point E (ii) Slope at end A
C	An aluminium solid cylinder of 7.5 cm diameter fits loosely inside a steel tube having 10 cm external diameter and 8 cm internal dimeter, the steel tube is 0.02 cm longer than aluminium cylinder and is 250 cm long before the load is applied. Calculate the safe load which can be placed on a rigid flat plate on the top of the steel tube. Safe stress for steel 95 MPA and for aluminium $65 \mathrm{MPa} . \mathrm{ES}=210 \mathrm{GPa}, \mathrm{EAl}=70$ GPa

